\begin{tabbing} $\forall$\=$E$, $X_{1}$, $X_{2}$:Type, ${\it dE}$:EqDecider($E$), ${\it dL}$:EqDecider(IdLnk), ${\it pred?}$:($E$$\rightarrow$(?$E$)),\+ \\[0ex]${\it info}$:($E$$\rightarrow$((:Id $\times$ $X_{1}$) + (:(:IdLnk $\times$ $E$) $\times$ $X_{2}$))), \\[0ex]$p$:(\=$\forall$$e$:$E$, $l$:IdLnk.\+ \\[0ex]$\exists$\=${\it e'}$:$E$\+ \\[0ex]($\forall$${\it e''}$:$E$. \\[0ex]($\uparrow$rcv?(${\it e''}$)) \\[0ex]$\Rightarrow$ (sender(${\it e''}$) = $e$) \\[0ex]$\Rightarrow$ (link(${\it e''}$) = $l$) \\[0ex]$\Rightarrow$ (((${\it e''}$ = ${\it e'}$) $\vee$ ${\it e''}$ $<$ ${\it e'}$) \& loc(${\it e'}$) = destination($l$) $\in$ Id))). \-\-\-\\[0ex]SWellFounded(pred!($e$;${\it e'}$)) \\[0ex]$\Rightarrow$ ($\forall$$e$:$E$. ($\neg$($\uparrow$first($e$))) $\Rightarrow$ (loc(pred($e$)) = loc($e$) $\in$ Id)) \\[0ex]$\Rightarrow$ ($\forall$$e$, ${\it e'}$:$E$. (loc($e$) = loc(${\it e'}$) $\in$ Id) $\Rightarrow$ (${\it pred?}$($e$) = ${\it pred?}$(${\it e'}$)) $\Rightarrow$ ($e$ = ${\it e'}$)) \\[0ex]$\Rightarrow$ \=($\forall$$e$:$E$, $l$:IdLnk, $n$:\{0..$\parallel$receives(${\it dE}$;${\it dL}$;${\it pred?}$;${\it info}$;$p$;$e$;$l$)$\parallel^{-}$\}.\+ \\[0ex]$\exists$\=${\it e'}$:$E$\+ \\[0ex](($\uparrow$rcv?(${\it e'}$)) \\[0ex]c$\wedge$ (link(${\it e'}$) = $l$ \& sender(${\it e'}$) = $e$ \& index(${\it dE}$;${\it dL}$;${\it pred?}$;${\it info}$;$p$;${\it e'}$) = $n$ $\in$ $\mathbb{Z}$))) \-\- \end{tabbing}